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Introduction

Arguably the most uniting part of Duke is basketball. With lively traditions, incredible game-
day culture, and overall a stellar basketball team, what’s not to love?! That being said, one
thing that unites Duke students even more is friendly competition. Consequently, on our mis-
sion to combine the two, we stumble upon an annual tradition: The NCAA March Madness
Tournament… more specifically, the challenge of perfecting a bracket. Using our knowledge
from STA221, we believe that we have been equipped with a skill set to more accurately predict
how far a team will go in the tournament based on historical data.

The NCAA March Madness tournament offers a wealth of sports analytics data for data
scientists to analyze. Individual and team statistics go into advanced metrics that are used
to rate and predict the performance of teams in the tournament. Part of tournament is the
opportunity to create a bracket that predicts the results of the single elimination tournament,
but the history of the bracket challenge, there has never been a perfect bracket. If we were to
flip a coin to pick the winner, we would have 1 in 263 or 1 in 9,223,372,036,854,775,808 odds.
If we improve our strategy and follow historical winning odds (e.g. how a 1 seed and a 16 seed
have performed against each other), we would improve to 1 in 46,576,549,017 - a lot better,
but that’s still astronomical - about the same amount of days left until the star explodes.
Several studies have explored methods to improve March Madness predictions using advanced
analytics. For instance, Singh et al. (2023) proposed a deep learning-based approach in their
study Advancing NCAA March Madness Forecasts Through Deep Learning and Combinatorial
Fusion Analysis, but we will not be utilizing a machine learning approach, instead focusing on
models based on historical advanced metrics.

Given the absurd difficulty of getting a perfect bracket, we can ask the question: How accu-
rately can a predictive model based on historical performance metrics, such as offensive and
defensive ratings from Ken Pomeroy’s analytics, forecast NCAA March Madness outcomes
compared to traditional seeding and random selection methods?
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Dataset

We sourced our data from Kaggle, using a dataset authored by Nishaan Amin, which holds
a large collection of different statistics, rankings, and ratings from multiple sites. For our
analysis we will be using statistics from kenpom.com using Pomeroy College Basketball ad-
vanced metrics dating back to 2008 and yearly tournament index statistics since 2013 from
heatcheckcbb.com.

Variable Name Description
ROUND Round Reached Furthest round a team advances to in the

tournament.
AdjOE Adjusted Offensive

Efficiency
Points scored per 100 possessions,
adjusted for opponent strength.

AdjDE Adjusted Defensive
Efficiency

Points allowed per 100 possessions,
adjusted for opponent strength.

AdjEM Adjusted Efficiency
Margin

Expected point margin against the
average team (AdjOE - AdjDE).

AdjTempo Adjusted Tempo Number of possessions per game (per 40
minutes), adjusted for opponent.

Off.eFGPct Effective Field Goal
Percentage

Shooting efficiency (accounting for
relative 3-point value).

Def.eFGPct Effective Field Goal
Percentage (Opponent)

Shooting efficiency of opponent
(accounting for relative 3-point value)

BlockPct Block Percentage Percentage of opponent field goal
attempts blocked.

StlRate Steal Rate Rate of opponent possessions ending in a
steal.

Experience Experience Average number of years of experience
among players.

AvgHeight Average Height Average height (in inches) among players.
Off2PtFG 2pt Field Goals Made Average number of 2-point shots made a

game.
Off3PtFG 3pt Field Goals Made Average number of 3-point shots made a

game.

Our analysis will attempt to predict ROUND, the furthest round a team reaches in the tourna-
ment. It’s a factor with levels 64, 32, 16, 8, 4, 2, 1, where 64 represents a loss in the first
round, and 1 represents a championship win.
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Exploratory Data Analysis

Let’s take a look at initial visualizations on how predictors can impact our response, ROUND.
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Offensive vs. Defensive Efficiency (2013 − 2023)

This plot takes a look at offensive and defensive efficiency (the former increases for great
offensive teams, the second decreases for great defensive teams), with logos indicating a final
four appearance. This visualization already indicates that these two may be solid predictors,
as most final four teams are good defensive and offensive teams based on these two metrics.
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Experience Distribution by Round Reached (2013 − 2023)

Next we can look at the distribution of team experience by round reached, outliers shown with
team logos. Successful teams seem to have a balanced amount of experience, meaning that
this may be a weaker predictor, with notable exceptions like the freshman talent squads of
Kentucky and Duke and the veteran-based SDSU and Providence teams.
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Methodology

Linear

We began our modeling stage with an initial linear model with all terms and will try to pare
it down using different model metrics, while making sure our model retains predictive ability.
We’ll begin by checking for multicollinearity among predictors.

AdjOE AdjDE AdjTempo Off.eFGPct Def.eFGPct
withEM 3.153803e+08 2.623516e+08 1.141 2.521 3.074
without 2.237000e+00 3.383000e+00 1.140 2.518 3.070

From initial examination, AdjOE, AdjDE, and AdjEM are extremely correlated with values on the
order of 108, which makes sense since AdjEM is the difference of the others. We’ll address this
by removing AdjEM in our model, which solves our multicollinearity issue (all predictor VIFs
fall below our threshold for concern of 5). Next, we can identify weak predictors by inference
using p-values. Most were not statistically significant, as shown in the following table:

term estimate std.error statistic p.value
Off.eFGPct 0.019 0.415 0.046 0.963
AdjTempo 0.015 0.247 0.061 0.952
Def.eFGPct -0.110 0.530 -0.208 0.835
AvgHeight 0.367 1.039 0.353 0.724
Off3PtFG -0.123 0.322 -0.382 0.702
BlockPct 0.209 0.336 0.622 0.534
Off2PtFG -0.289 0.353 -0.818 0.413
Experience 1.645 1.794 0.917 0.360
(Intercept) 90.859 89.637 1.014 0.311
StlRate -75.082 49.101 -1.529 0.127

Therefore, we tried a significantly reduced model, leaving AdjOE and AdjDE as our only 2
predictors. With an AIC 11.76 lower and a BIC 11.76 lower than the previous model, we felt
that the removal was justified, but also conducted a drop-in deviance test to confirm.

term df.residual df sumsq p.value
ROUND ~ AdjOE + AdjDE 629 NA NA NA
ROUND ~ AdjOE + AdjDE + Adj… 620 9 1936.718 0.725

With our removed variables not being statistically significant, we can finalize our model to just
AdjOE and AdjDE.
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Interaction

As we analyzed the impact that certain factors have on round-reached through modeling,
we wanted to explore potential interaction between variables and how that might improve
our model. We took a look at interaction terms between Adjusted Offensive and Adjusted
Defensive Efficiency since we were interested in how the combination of a team’s scoring ability
and defensive strength might jointly influence tournament success, especially as we observed
that they were the most important predictors for our linear model.
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To visualize, we created levels to observe how low, medium, and high Adjusted Defensive
Efficiency affects the relationship between Adjusted Offensive Efficiency and round reached.
For teams with low defensive efficiency, offensive efficiency plays a much stronger role in
determining how far they advance - we can see that this has the steepest line and highest
slope on the graph. Teams with high or medium defensive strength appear less dependent on
offensive ratings. The non-parallel lines highlight a meaningful interaction between adjusted
offensive efficiency and adjusted defensive efficiency. To make sure, we can use a drop-in
deviance test to confirm the utility of this interaction.

term df.residual rss df sumsq p.value
ROUND ~ AdjOE + AdjDE 629 197220.5 NA NA NA
ROUND ~ AdjOE * AdjDE 628 186046.5 1 11174.02 0

With a statistically significant p-value, we can reject the null hypothesis that the interaction
term is 0, and confirm the choice of adding it.

We also checked assumptions with this complete model (see Appendix), which unfortunately
were not entirely verified, likely because ROUND is a factor instead of numerical. We can still
derive a lot of value out of this model, but this pushed us towards a logistic one as well.
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Logistic

Logistic models are meant to predict binary results, which seems ill-suited for our task, where
we’re attempting to figure out how far a team goes in the tournament. A first thought is to
try to build a model predicting if a team will make it to the Final Four, for instance. But if
we attempt to, we come across the essential problem of data skew - out of 64 (give or take)
teams in each tournament, only 4 make it to semi-final, meaning that our initial logistic model
is hugely prone to data skew, with an accuracy of 600

632 ≈ 95%, but a sensitivity of 10
40 = 25%.
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So, is there any way to reduce this data disparity? Well, one important feature of the tourna-
ment is that rounds are sequential, such that you have to win a game in the round of 32 to
proceed to the sweet 16, for instance. So what if we make a model for each round, trimming
the data down as we go through to those who made it that far? For our “made it to the sweet
sixteen” model, we could then only consider the 32 teams that one the first game. This solves
our data skew, with an even 50/50 split of winners and losers each round. It also addresses
a fact we didn’t initially think about: each round is fundamentally different, with distinct
match-ups, locations, and other factors that can change in whose favor a game swings.
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Indeed, the above plot shows how the values of our logistic regression models (which use the
interaction between offensive and defensive efficiency) change by round, confirming this idea
of the difference between rounds. Interestingly, it seems that offense is most important in the
championship game and in the round of 64, whereas defense matters more in the intermediary
rounds.

For predictions, we’ll iterate through each of these 6 models, stopping when the team loses a
game. Initially, we’ll start with thresholds of 0.5 for each model for an initial check to see if
this method is even viable.

[1] "Virginia (2019) Actual Result: 1"
[1] "------------- ROUND BY ROUND RESULTS -------------"
[1] "64 -> 32 : 99.34 % TRUE"
[1] "32 -> 16 : 95.47 % TRUE"
[1] "16 -> 8 : 87.09 % TRUE"
[1] "8 -> 4 : 70.14 % TRUE"
[1] "4 -> 2 : 61.42 % TRUE"
[1] "2 -> 1 : 51.3 % TRUE"
[1] "-------------- END OF TOURNAMENT --------------"
[1] "Result: Reached Round of 1"

According to our initial results, it does seem to work! Thresholds will be adjusted according to
ROC curves, but teams that went high in the tournament (such as 2019 Virginia) are already
being predicted to succeed.

We also checked assumptions with these new logistic models (see Appendix), and they were
absolutely verified, with a linear relationship between empirical logit and our predictors. Inde-
pendence and randomness were a little trickier because teams are ranked based on performance
against each other, but we considered our solid sample size to be enough to account for this.
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Results

Linear

Our final linear model is one that uses AdjOE, AdjDE, as well as their interaction to predict
the round reached of a March Madness team. All predictors are statistically significant with
p-values of approximately zero.

term estimate std.error statistic p.value
(Intercept) 1691.179 261.959 6.456 0
AdjOE -16.144 2.347 -6.880 0
AdjDE -14.836 2.674 -5.548 0
AdjOE:AdjDE 0.147 0.024 6.141 0

This model has extremely low multicollinearity among variables with VIF’s near 1 for both
AdjOE and AdjDE, as well as the lowest AIC and BIC values of all the models that we tested
(5396.37 and 5418.62). The linear model with the predictors AdjOE, AdjDE, and their interac-
tion is therefore the best fit for predicting the round reached of a team in March Madness.

Side note on interpretation: our response is ROUND, a factor representing the round a team
lost in, but a linear model complicates interpretation since it’ll consider ROUND as numerical.
Therefore, we’ll consider a new output, the number of games that a team missed out on, which
can be calculated as log2 ROUND. So, a team that lost in the Final Four would have an output
of log2 4 = 2, where 2 represents the two games that they missed out on (the Final Four game
and the championship). A team that wins it all would have an output of log2 1 = 0, as they
didn’t miss out on any games. This output can be thought of as a score that represents how
well a team performed in the tournament: the closer you are to 0, the better the score.

Using this, our coefficients yield interesting interpretations. As AdjOE increases by 1 unit
(as offense gets better), the model predicts ROUND to decrease by 16 holding other predictors
constant, or for a team to advanced 2 games further. Equivalently, as AdjDE increases by 1
unit (as defense gets worse), the model also predicts ROUND to decrease, this time by 15 holding
other predictors constant, or for a team to advance 3.9 games further. This seems strange at
first, but must be interpreted alongside our interaction term. If we reframe the model so that
improving defense corresponds to decreasing AdjDE (or increasing -AdjDE), we observe that
the interaction between offense and defense is beneficial: as both improve together, we expect
teams to advance further, with each unit improvement decreasing ROUND by 0.15 beyond what
would be expected by adding their separate effects.

Overall, it seems that both AdjOE and AdjDE have significant effects on performance, but are
trade-offs: it’s difficult for teams to optimize defense and offense simultaneously. Notably,
offense may be slightly more valuable, but as seen previously, this also largely depends on
which round is being played in, as well as matchups.
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Logistic

To adjust our thresholds and verify model performance, we used ROC curves for each of the 6
models. Our AUC is consistently solid, starting around 0.85 and increasing until a staggering
0.96, likely because there are fewer data points as we approach the championship game, but
still indicating great performance.
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Our goal is to maximize specificity to reduce false confidence: we don’t want situations where
we mistakenly predict a team will win but they actually lose. Therefore, we computed some
new thresholds based on a minimum specificity of 95 %.
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While an overall accuracy of 55.38% may not seem fantastic, we believe this is actually a
decently high-performing model. Accuracy does not consider the many near-misses we had,
where 122 32-rounders were predicted to finish in the round of 64 for instance.
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Conclusion

We originally set to build models that could be better than random guessing or historical
seed wins, and we believe that we’ve succeeded. Our models outperform random guessing
significantly, (which require consecutive good guesses), and are likely similar to sophisticated
seed methods. We also discovered multiple interesting trends in our analysis, notably that
offense and defense seem to be trade-offs, and that offense matters more overall, with different
effects depending on the round.

However, there were also a few limitations to our project. Our data timeframe is limited,
meaning that we miss out on important seasons that could add more nuance to the model.
This is especially important for our logistic system, where data is reduced immensely for our
championship game, meaning that these models are likely overfit. There are also likely better
ways to capture the effects of our other predictors without removing them through interactions
that we weren’t able to test. Furthermore, our linear assumptions were violated, likely due
to our response ROUND being a factor, so more work could be done to deal with this kind of
response variable.

Finally, there can definitely be further work done to improve our models. While we are able
to predict in theory the round that teams would be able to reach, we could account for head-
to-head battles where individual statistics are matched directly against each other instead of
decoding the relationship of the statistics to the round reached. Additionally, more advanced
statistical metrics may offer a new perspective on how to further provide insights, since the
tournament is only played once annually and there is much volatility in team rosters as well
as an evolution in playstyle.

Taken as a whole, the beauty in the tournament resides in the fact that games are truly
“madness”, and as history suggests, we likely will never be able to fully predict a bracket with
absolute confidence.
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Appendix

Linear Assumptions
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Relationship between Fitted and Residuals

Linearity and constant variance seem to be violated in our residual plot, with diagonal lines
forming across our residuals. This is likely because of the nature of our response as a factor
(64, 32, 16, 8, 4, 2, 1). This violation persisted when we switched to log(ROUND), so we
decided to keep it as such, still deriving value out of considering our response as numerical.
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Our normality assumption is not terribly violated. There are regions that do not perfectly
follow the curve, and some may argue that it is not uni-modal; regardless, our sample size is
large so we assume the data to be robust to departures. Independence is a little tricky here,
since teams are ranked based on performance against each other, but we considered our large
sample size to be enough, with more data potentially being even stronger.

11



Logistic Assumptions
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Our logistic model assumptions are a lot stronger. There is absolutely a linear relationship
between the empirical logit and our predictors, meaning we might prefer logistic modeling to
linear modeling in the context of our analysis. However, this assumption holds less as we get
to later models with less data. Randomness and independence are a little tricky here, since
teams are ranked compared to performance against each other. Regardless, we considered our
large sample size across seasons to be enough, with even more data potentially being even
stronger.
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